top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Local Limit Theorems for Inhomogeneous Markov Chains [[electronic resource] /] / by Dmitry Dolgopyat, Omri M. Sarig
Local Limit Theorems for Inhomogeneous Markov Chains [[electronic resource] /] / by Dmitry Dolgopyat, Omri M. Sarig
Autore Dolgopyat Dmitry
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (348 pages)
Disciplina 519.2
Altri autori (Persone) SarigOmri M
Collana Lecture Notes in Mathematics
Soggetto topico Probabilities
Stochastic processes
Dynamical systems
Probability Theory
Stochastic Processes
Dynamical Systems
ISBN 3-031-32601-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Acknowledgments -- Contents -- Notation -- 1 Overview -- 1.1 Setup and Aim -- 1.2 The Obstructions to the Local Limit Theorems -- 1.3 How to Show that the Obstructions Do Not Occur -- 1.4 What Happens When the Obstructions Do Occur -- 1.4.1 Lattice Case -- 1.4.2 Center-Tight Case -- 1.4.3 Reducible Case -- 1.5 Some Final Words on the Setup of this Work -- 1.6 Prerequisites -- 1.7 Notes and References -- 2 Markov Arrays, Additive Functionals, and Uniform Ellipticity -- 2.1 The Basic Setup -- 2.1.1 Inhomogeneous Markov Chains -- 2.1.2 Inhomogeneous Markov Arrays -- 2.1.3 Additive Functionals -- 2.2 Uniform Ellipticity -- 2.2.1 The Definition -- 2.2.2 Contraction Estimates and Exponential Mixing -- 2.2.3 Bridge Probabilities -- 2.3 Structure Constants -- 2.3.1 Hexagons -- 2.3.2 Balance and Structure Constants -- 2.3.3 The Ladder Process -- 2.4 γ-Step Ellipticity Conditions -- *2.5 Uniform Ellipticity and Strong Mixing Conditions -- 2.6 Reduction to Point Mass Initial Distributions -- 2.7 Notes and References -- 3 Variance Growth, Center-Tightness, and the CentralLimit Theorem -- 3.1 Main Results -- 3.1.1 Center-Tightness and Variance Growth -- 3.1.2 The Central Limit Theorem and theTwo-Series Theorem -- 3.2 Proofs -- 3.2.1 The Gradient Lemma -- 3.2.2 The Estimate of Var(SN) -- 3.2.3 McLeish's Martingale Central Limit Theorem -- 3.2.4 Proof of the Central Limit Theorem -- 3.2.5 Convergence of Moments -- 3.2.6 Characterization of Center-Tight Additive Functionals -- 3.2.7 Proof of the Two-Series Theorem -- *3.3 The Almost Sure Invariance Principle -- 3.4 Notes and References -- 4 The Essential Range and Irreducibility -- 4.1 Definitions and Motivation -- 4.2 Main Results -- 4.2.1 Markov Chains -- 4.2.2 Markov Arrays -- 4.2.3 Hereditary Arrays -- 4.3 Proofs -- 4.3.1 Reduction Lemma -- 4.3.2 Joint Reduction.
4.3.3 The Possible Values of the Co-Range -- 4.3.4 Calculation of the Essential Range -- 4.3.5 Existence of Irreducible Reductions -- 4.3.6 Characterization of Hereditary Additive Functionals -- 4.4 Notes and References -- 5 The Local Limit Theorem in the Irreducible Case -- 5.1 Main Results -- 5.1.1 Local Limit Theorems for Markov Chains -- 5.1.2 Local Limit Theorems for Markov Arrays -- 5.1.3 Mixing Local Limit Theorems -- 5.2 Proofs -- 5.2.1 Strategy of Proof -- 5.2.2 Characteristic Function Estimates -- 5.2.3 The LLT via Weak Convergence of Measures -- 5.2.4 The LLT in the Irreducible Non-Lattice Case -- 5.2.5 The LLT in the Irreducible Lattice Case -- 5.2.6 Mixing LLT -- 5.3 Notes and References -- 6 The Local Limit Theorem in the Reducible Case -- 6.1 Main Results -- 6.1.1 Heuristics and Warm Up Examples -- 6.1.2 The LLT in the Reducible Case -- 6.1.3 Irreducibility as a Necessary Condition for the Mixing LLT -- 6.1.4 Universal Bounds for Prob[SN-zN(a,b)] -- 6.2 Proofs -- 6.2.1 Characteristic Functions in the Reducible Case -- 6.2.2 Proof of the LLT in the Reducible Case -- 6.2.3 Necessity of the Irreducibility Assumption -- 6.2.4 Universal Bounds for Markov Chains -- 6.2.5 Universal Bounds for Markov Arrays -- 6.3 Notes and References -- 7 Local Limit Theorems for Moderate Deviationsand Large Deviations -- 7.1 Moderate Deviations and Large Deviations -- 7.2 Local Limit Theorems for Large Deviations -- 7.2.1 The Log Moment Generating Functions -- 7.2.2 The Rate Functions -- 7.2.3 The LLT for Moderate Deviations -- 7.2.4 The LLT for Large Deviations -- 7.3 Proofs -- 7.3.1 Strategy of Proof -- 7.3.2 A Parameterized Family of Changes of Measure -- 7.3.3 Choosing the Parameters -- 7.3.4 The Asymptotic Behavior of V"0365VξN(SN) -- 7.3.5 Asymptotics of the Log Moment Generating Functions -- 7.3.6 Asymptotics of the Rate Functions.
7.3.7 Proof of the Local Limit Theorem for Large Deviations -- 7.3.8 Rough Bounds in the Reducible Case -- 7.4 Large Deviations Thresholds -- 7.4.1 The Large Deviations Threshold Theorem -- 7.4.2 Admissible Sequences -- 7.4.3 Proof of the Large Deviations Threshold Theorem -- 7.4.4 Examples -- 7.5 Notes and References -- 8 Important Examples and Special Cases -- 8.1 Introduction -- 8.2 Sums of Independent Random Variables -- 8.3 Homogenous Markov Chains -- *8.4 One-Step Homogeneous Additive Functionals in L2 -- 8.5 Asymptotically Homogeneous Markov Chains -- 8.6 Equicontinuous Additive Functionals -- 8.7 Notes and References -- 9 Local Limit Theorems for Markov Chains in RandomEnvironments -- 9.1 Markov Chains in Random Environments -- 9.1.1 Formal Definitions -- 9.1.2 Examples -- 9.1.3 Conditions and Assumptions -- 9.2 Main Results -- 9.3 Proofs -- 9.3.1 Existence of Stationary Measures -- 9.3.2 The Essential Range is Almost Surely Constant -- 9.3.3 Variance Growth -- 9.3.4 Irreducibility and the LLT -- 9.3.5 LLT for Large Deviations -- 9.4 Notes and References -- A The Gärtner-Ellis Theorem in One Dimension -- A.1 The Statement -- A.2 Background from Convex Analysis -- A.3 Proof of the Gärtner-Ellis Theorem -- A.4 Notes and References -- B Hilbert's Projective Metric and Birkhoff's Theorem -- B.1 Hilbert's Projective Metric -- B.2 Contraction Properties -- B.3 Notes and References -- C Perturbations of Operators with Spectral Gap -- C.1 The Perturbation Theorem -- C.2 Some Facts from Analysis -- C.3 Proof of the Perturbation Theorem -- C.4 Notes and References -- References -- Index.
Record Nr. UNINA-9910736025503321
Dolgopyat Dmitry  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Local Limit Theorems for Inhomogeneous Markov Chains [[electronic resource] /] / by Dmitry Dolgopyat, Omri M. Sarig
Local Limit Theorems for Inhomogeneous Markov Chains [[electronic resource] /] / by Dmitry Dolgopyat, Omri M. Sarig
Autore Dolgopyat Dmitry
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (348 pages)
Disciplina 519.2
Altri autori (Persone) SarigOmri M
Collana Lecture Notes in Mathematics
Soggetto topico Probabilities
Stochastic processes
Dynamical systems
Probability Theory
Stochastic Processes
Dynamical Systems
ISBN 3-031-32601-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Acknowledgments -- Contents -- Notation -- 1 Overview -- 1.1 Setup and Aim -- 1.2 The Obstructions to the Local Limit Theorems -- 1.3 How to Show that the Obstructions Do Not Occur -- 1.4 What Happens When the Obstructions Do Occur -- 1.4.1 Lattice Case -- 1.4.2 Center-Tight Case -- 1.4.3 Reducible Case -- 1.5 Some Final Words on the Setup of this Work -- 1.6 Prerequisites -- 1.7 Notes and References -- 2 Markov Arrays, Additive Functionals, and Uniform Ellipticity -- 2.1 The Basic Setup -- 2.1.1 Inhomogeneous Markov Chains -- 2.1.2 Inhomogeneous Markov Arrays -- 2.1.3 Additive Functionals -- 2.2 Uniform Ellipticity -- 2.2.1 The Definition -- 2.2.2 Contraction Estimates and Exponential Mixing -- 2.2.3 Bridge Probabilities -- 2.3 Structure Constants -- 2.3.1 Hexagons -- 2.3.2 Balance and Structure Constants -- 2.3.3 The Ladder Process -- 2.4 γ-Step Ellipticity Conditions -- *2.5 Uniform Ellipticity and Strong Mixing Conditions -- 2.6 Reduction to Point Mass Initial Distributions -- 2.7 Notes and References -- 3 Variance Growth, Center-Tightness, and the CentralLimit Theorem -- 3.1 Main Results -- 3.1.1 Center-Tightness and Variance Growth -- 3.1.2 The Central Limit Theorem and theTwo-Series Theorem -- 3.2 Proofs -- 3.2.1 The Gradient Lemma -- 3.2.2 The Estimate of Var(SN) -- 3.2.3 McLeish's Martingale Central Limit Theorem -- 3.2.4 Proof of the Central Limit Theorem -- 3.2.5 Convergence of Moments -- 3.2.6 Characterization of Center-Tight Additive Functionals -- 3.2.7 Proof of the Two-Series Theorem -- *3.3 The Almost Sure Invariance Principle -- 3.4 Notes and References -- 4 The Essential Range and Irreducibility -- 4.1 Definitions and Motivation -- 4.2 Main Results -- 4.2.1 Markov Chains -- 4.2.2 Markov Arrays -- 4.2.3 Hereditary Arrays -- 4.3 Proofs -- 4.3.1 Reduction Lemma -- 4.3.2 Joint Reduction.
4.3.3 The Possible Values of the Co-Range -- 4.3.4 Calculation of the Essential Range -- 4.3.5 Existence of Irreducible Reductions -- 4.3.6 Characterization of Hereditary Additive Functionals -- 4.4 Notes and References -- 5 The Local Limit Theorem in the Irreducible Case -- 5.1 Main Results -- 5.1.1 Local Limit Theorems for Markov Chains -- 5.1.2 Local Limit Theorems for Markov Arrays -- 5.1.3 Mixing Local Limit Theorems -- 5.2 Proofs -- 5.2.1 Strategy of Proof -- 5.2.2 Characteristic Function Estimates -- 5.2.3 The LLT via Weak Convergence of Measures -- 5.2.4 The LLT in the Irreducible Non-Lattice Case -- 5.2.5 The LLT in the Irreducible Lattice Case -- 5.2.6 Mixing LLT -- 5.3 Notes and References -- 6 The Local Limit Theorem in the Reducible Case -- 6.1 Main Results -- 6.1.1 Heuristics and Warm Up Examples -- 6.1.2 The LLT in the Reducible Case -- 6.1.3 Irreducibility as a Necessary Condition for the Mixing LLT -- 6.1.4 Universal Bounds for Prob[SN-zN(a,b)] -- 6.2 Proofs -- 6.2.1 Characteristic Functions in the Reducible Case -- 6.2.2 Proof of the LLT in the Reducible Case -- 6.2.3 Necessity of the Irreducibility Assumption -- 6.2.4 Universal Bounds for Markov Chains -- 6.2.5 Universal Bounds for Markov Arrays -- 6.3 Notes and References -- 7 Local Limit Theorems for Moderate Deviationsand Large Deviations -- 7.1 Moderate Deviations and Large Deviations -- 7.2 Local Limit Theorems for Large Deviations -- 7.2.1 The Log Moment Generating Functions -- 7.2.2 The Rate Functions -- 7.2.3 The LLT for Moderate Deviations -- 7.2.4 The LLT for Large Deviations -- 7.3 Proofs -- 7.3.1 Strategy of Proof -- 7.3.2 A Parameterized Family of Changes of Measure -- 7.3.3 Choosing the Parameters -- 7.3.4 The Asymptotic Behavior of V"0365VξN(SN) -- 7.3.5 Asymptotics of the Log Moment Generating Functions -- 7.3.6 Asymptotics of the Rate Functions.
7.3.7 Proof of the Local Limit Theorem for Large Deviations -- 7.3.8 Rough Bounds in the Reducible Case -- 7.4 Large Deviations Thresholds -- 7.4.1 The Large Deviations Threshold Theorem -- 7.4.2 Admissible Sequences -- 7.4.3 Proof of the Large Deviations Threshold Theorem -- 7.4.4 Examples -- 7.5 Notes and References -- 8 Important Examples and Special Cases -- 8.1 Introduction -- 8.2 Sums of Independent Random Variables -- 8.3 Homogenous Markov Chains -- *8.4 One-Step Homogeneous Additive Functionals in L2 -- 8.5 Asymptotically Homogeneous Markov Chains -- 8.6 Equicontinuous Additive Functionals -- 8.7 Notes and References -- 9 Local Limit Theorems for Markov Chains in RandomEnvironments -- 9.1 Markov Chains in Random Environments -- 9.1.1 Formal Definitions -- 9.1.2 Examples -- 9.1.3 Conditions and Assumptions -- 9.2 Main Results -- 9.3 Proofs -- 9.3.1 Existence of Stationary Measures -- 9.3.2 The Essential Range is Almost Surely Constant -- 9.3.3 Variance Growth -- 9.3.4 Irreducibility and the LLT -- 9.3.5 LLT for Large Deviations -- 9.4 Notes and References -- A The Gärtner-Ellis Theorem in One Dimension -- A.1 The Statement -- A.2 Background from Convex Analysis -- A.3 Proof of the Gärtner-Ellis Theorem -- A.4 Notes and References -- B Hilbert's Projective Metric and Birkhoff's Theorem -- B.1 Hilbert's Projective Metric -- B.2 Contraction Properties -- B.3 Notes and References -- C Perturbations of Operators with Spectral Gap -- C.1 The Perturbation Theorem -- C.2 Some Facts from Analysis -- C.3 Proof of the Perturbation Theorem -- C.4 Notes and References -- References -- Index.
Record Nr. UNISA-996542671903316
Dolgopyat Dmitry  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui